The m-order Jacobi, Gauss–Seidel and symmetric Gauss–Seidel methods
DOI :
https://doi.org/10.29215/pecen.v6i0.1773Résumé
Here, m-order methods are developed that conserve the form of the first-order methods. The m-order methods have a higher rate of convergence than their first-order version. These m-order methods are subsequences of its precursor method, where some benefits of using vector and parallel processors can be explored. The numerical results obtained with vector implementations show computational advantages when compared to the first-order versions.Références
Antuono M. and Colicchio G. (2016) Delayed Over-Relaxation for iterative methods. Journal of Computational Physics, 321: 892–907.
Apostol T.M. (1981) Mathematical analysis. Addilson-Wesley Publishing Company.
Bai Z.-Z. and Miao C.-Q. (2017) On local quadratic convergence of inexact simplified Jacobi–Davidson method. Linear Algebra and its Applications, 520: 215–241.
Bertaccini D. and Durastante F. (2018) Iterative methods and preconditioning for large and sparse linear systems with applications. Taylor & Francis Group.
Forsythe G.E. and Moler C.B. (1967) Computer solution of linear algebraic systems. Prentice-Hall, New Jersey.
Golub G.H. and Van Loan C. (2013) Matrix computations. The Johns Hopkins University Press, Baltimore, MD, 4th edition.
Golub G.H. and Varga R.S. (1961) Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods, Parts I and II. Numerische Mathematik, 3: 147–168.
Kahan W.M. (1958) Gauss–Seidel methods of solving large systems of linear equations. PhD thesis, University of Toronto, Toronto.
Kepner J. (2009) Parallel MATLAB for Multicore and Multinode Computers. Society for Industrial and Applied Mathematics, USA, 1st edition.
Kolodziej S.P., Aznaveh M., Bullock M., David J., Davis T.A., Henderson M., Hu Y. and Sandstrom R. (2019) The SuiteSparse Matrix Collection Website Interface. Journal of Open Source Software, 4(35): 1244–1248.
Kong Q., Jing Y.-F., Huang T.-Z. and An H.-B. (2019). Acceleration of the Scheduled Relaxation Jacobi method: Promising strategies for solving large, sparse linear systems. Journal of Computational Physics, 397:108862.
Mazza M., Manni C., Ratnani A., Serra-Capizzano S. and Speleers H. (2019) Isogeometric analysis for 2D and 3D curl–div problems: Spectral symbols and fast iterative solvers. Computer Methods in Applied Mechanics and Engineering, 344: 970–997.
Téléchargements
Fichiers supplémentaires
Publiée
Numéro
Rubrique
Licence
Autores que publicam nesta revista concordam com os seguintes termos / Authors who publish in this journal agree to the following terms:
A) Autor(es) e o periódico mantêm os direitos da publicação; os autores concedem ao periódico o direito de primeira publicação, sendo vedada sua reprodução total ou parcial sob qualquer caráter de ineditismo; qualquer utilização subsequente de trechos de manuscritos (e.g., figuras, tabelas, gráficos etc.) publicados na Pesquisa e Ensino em Ciências Exatas e da Natureza deve reconhecer a autoria e publicação original / Author (s) and the journal maintain the rights of publication; the authors grant the journal the right of first publication, being prohibited their total or partial reproduction in any character of novelty; any subsequent use of excerpts from manuscripts (e.g., figures, tables, graphics, etc.) published in Research and Teaching in Exact and Natural Sciences must acknowledge the original authorship and publication.
B) Autores tem o direito de disseminar a própria publicação, podendo, inclusive disponibilizar o PDF final do trabalho em qualquer site institucional ou particular, bem como depositar a impressão da publicação em bibliotecas nacionais e internacionais / Authors have the right to disseminate the publication itself, and may also make available the final PDF of the work in any institutional or private site, as well as depositing the printing of the publication in national and international libraries.