Críticas ao "Tree Thinking": elucidando o significado das relações filogenéticas

Rafael Gomes de Souza


O "Tree Thinking" é tido como a metodologia dominante na Biologia Sistemática atual. Todavia, críticas aos procedimentos executados pela mesma são diversas. Neste trabalho serão apresentadas e defendidas aquelas feitas por Fitzhugh no que tange a sua base filosófica e as consequências de tais modificações. Assim, o presente trabalho tem como objetivo demonstrar que o "Tree Thinking" é incompleto, por não reconhecer que as relações filogenéticas são do tipo causal, i.e., são hipóteses explanatórias, sumarizadas de forma prévia em um esquete explanatório (cladograma). Além disso, para embasar tal argumentação, será apresentada uma discussão sobre a definição e os objetivos da Biologia Sistemática e do "Tree Thinking". Como resultado, será possível observar uma confusão entre classificar e sistematizar o conhecimento por aqueles que seguem o "Tree Thinking". Ademais, o "Tree Thinking" falha na aquisição de explicações causais quanto à origem e fixação das características estudadas. Desta forma, o "Tree Thinking" pode ser considerado como uma prática incompleta dentro da Biologia Sistemática e, portanto, recomenda-se a aplicação das propostas de Fitzhugh.

Palavras chave: Biologia Sistemática, Cladística, Fitzhugh, Hennig, Sistemática Filogenética, Zimmerman.

"Tree Thinking" Criticism: elucidating the meaning of phylogenetic relationships

Abstract: The "Tree Thinking" is regarded as the dominant methodology in current Systematic Biology. However, criticisms of the procedures carried out by it are diverse. Here the criticisms made by Fitzhugh regarding its philosophical basis and the consequences of such modifications are presented and defended. Thus, the present work aims to demonstrate that "Tree Thinking", as it has been used, is incomplete because it does not recognize that phylogenetic relationships are of the causal type previously summarized in an explanatory sketch (cladogram). In addition, to support such an argument, a discussion on the definition and objectives of Systematic Biology and "Tree Thinking" is provided. As a result, it is possible to observe confusion between classifying and systematizing the knowledge by those who follow "Tree Thinking". In addition, "Tree Thinking" fails to provide causal explanations regarding the origin and fixation of the characteristics studied. In this way, "Tree Thinking" can be considered an incomplete practice within Systematic Biology and, therefore, the application of the proposals of Fitzhugh are recommended.

Key words: Systematic Biology, Cladistics, Fitzhugh, Hennig, Systematic Phylogenetics, Zimmerman.

Texto completo:



Amorim D.S. (2002) Fundamentos de Sistemática Filogenética. Ribeirão Preto: Holos. 156 p.

Archibald J.K., Mort M.E. & Crawford D.J. (2003) Bayesian inference of phylogeny: a non-technical primer. Taxon, 52: 187–191.

Ashlock P.D. (1974) An evolutionary systematist’s view of classification. Systematic Zoology, 28(4): 441–450.

Assis L.C.S. (2009) Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics, 25: 528–544.

Baum D.A, Smith, S.D & Donovan S.S.S. (2005) The Tree-Thinking Challenge. Science, 310: 979–980.

Beatty J. (1994) The proximate/ultimate distinction in the multiple careers of Ernst Mayr. Biology & Philosophy, 9: 333–356.

Bertrand Y. & Härlan M. (2006) Stability and universality in the application of taxon names in phylogenetic nomenclature. Systematic Biology, 55: 848–858.

Brochu C.A. (2013) Phylogenetic relationships of Palaeogene ziphodont eusuchians and the status of Pristichampsus Gervais, 1853. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 103: 521–550.

Brower A.V.Z. (2000) Evolution is not a necessary assumption of cladistics. Cladistics, 16(1): 143–154.

Bunge M. (1998) Philosophy of science, volume 1, from problem to theory. New Brunswick: Transaction Publishers. 624 p.

Cantino P.D. & de Queiroz K. (2006) PhyloCode: International code of phylogenetic nomenclature, version 3a. Disponível em: (Acessado em 27/06/2017).

Christoffersen M.L. (1995) Cladistic Taxonomy, Phylogenetic Systematics, and Evolutionary Ranking. Systematic Biology, 44(3): 440–454.

Coffey P. (1938) Ontology or the Theory of Being: An Introduction to General Metaphysics. Nova Iorque: Peter Smith. 439 p.

Darlington P.J. (1970) A practical criticismo of Hennig-Brundin ‚Phylogenetic Systematics‛ and Antarctic biogeography. Systematic Zoology, 19(1): 1–18.

Darwin C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Londres: John Murray. 502 p.

Dayrat B. (2003) The Roots of Phylogeny: How Did Haeckel Build His Trees? Systematic Biology, 52(4): 515–527.

De Pinna M.G.G. (1991) Concepts and tests of homology in the cladistics paradigm. Cladistics, 7: 367–394.

de Queiroz K. & Gauthier J. (1990) Phylogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names. Systematic Zoology, 39:307–322.

de Queiroz K. & Gauthier J. (1992) Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23: 449–480.

de Queiroz K. & Gauthier J. (1994) Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution, 9: 27–31.

de Queiroz K. & Poe S. (2001) Philosophy and phylogenetic inference: A comparison of likelihood and parsimony methods in the context of Karl Popper’s writings on corroboration. Systematic Biology, 50: 305–321.

Donoghue M.J. & Kadereit J.W. (1992) Waler Zimmermann and the Growth of Phylogenetic Theory. Systematic Biology, 41(1): 74–85.

Farris J.A. (1983) The logical basis of phylogenetic analysis (p. 7–36). In: Platnick N.I. & Funk V.A. (Eds). Advances in Cladistics. Volume 2. Nova Iorque: Columbia University Press. 250 p.

Farris J.S. (2008) Parsimony and explanatory power. Cladistics, 24: 825–847.

Farris J.S. (2013) Pattern taxonomy. Cladistics, 29: 228–229.

Farris J.S., Kluge A.G. & Carpenter J.M. (2001) Popper and likelihood versus ‘‘Popper.*’’. Systematic Biology, 50: 438–444.

Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368–376.

Felsenstein J. (2004) In ferring phylogenies. Sunderland: Sinauer Associates, Inc. 664 p.

Ferigolo J. (2015) A epistemologia de Aristóteles. Rio Grande do Sul: Editora Unisinos. 232 p.

Ferigolo J. (2016) Filosofia da Biologia de Aristóteles. Curitiba: Editora Prismas. 474 p.

Fitzhugh K. (2005a) Les bases philosophiques de l'inférence phylogénétique: une vue d'ensemble. In: Deleporte P. & Lecointre G. (Eds). Philosophie de la systématique, Biosystema, 24: 83–105.

Fitzhugh K. (2005b) The inferential basis of species hypotheses: the solution to defining the term ‚species.‛ Marine Ecology, 26: 155–165.

Fitzhugh K. (2006a) The abduction of phylogenetic hypotheses. Zootaxa, 1145: 1–110.

Fitzhugh K. (2006b) The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zoologica Scripta, 35: 261–286.

Fitzhugh K. (2006c) The ‘requirement of total evidence’ and its role in phylogenetic systematics. Biology and Philosophy, 21: 309–351.

Fitzhugh K. (2008a) Abductive inference: implications for ‘Linnean’ and ‘phylogenetic’ approaches for representing biological systematization. Evolutionary Biology, 35: 52–82.

Fitzhugh K. (2008b) Clarifying the role of character loss in phylogenetic inference. Zoologica Scripta, 37: 561–569.

Fitzhugh K. (2009) Species as explanatory hypotheses: refinements and implications. Acta Biotheoretica, 57: 201–248.

Fitzhugh K. (2010) Evidence for evolution versus evidence for intelligent design: parallel confusions. Evolutionary Biology, 37: 68–92.

Fitzhugh K. (2012) The limits of understanding in biological systematics. Zootaxa, 3435: 40–67.

Fitzhugh K (2014) Character mapping and cladogram comparison versus the requirement of total evidence: Does it matter for polychaete systematics? Memoires of Museum Victoria, 71: 67–78.

Fitzhugh K. (2016a) Phylogenetic hypotheses: neither testable nor falsifiable. Evolutionary Biology, 43: 257–266.

Fitzhugh K. (2016b) Ernst Mayr, causal understanding, and systematics: an example using sabelliform polychaetes. Invertebrate Biology, 135: 302–313.

Fitzhugh K. (2016c) Sequence Data, Phylogenetic Inference, and Implications of Downward Causation. Acta Biotheoretica, 64(2): 133–60.

Fitzhugh K. (2016d) Dispelling five myths about hypothesis testing in biological systematics. Organisms Diversity & Evolution, 16(3): 443–465.

Giribet G. (2015) Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. Zoologischer Anzeiger, 256: 96–103.

Goloboff P.A. (2003) Parsimony, likelihood, and simplicity. Cladistics, 19: 91–103.

Griffiths G.C.D. (1974) On the foundations of biological systematics. Acta Biotheoretica, 23: 85–131.

Haber M. (2011) Phylogenetic inference (p. 231–242). In: Tucker A. (Ed.). A Companion to the Philosophy of History and Historiography. Malden: Wiley-Blackwell. 576 p.

Haeckel E. (1866) Generelle Morphologie der Organismen. Berlim: Reimer. 574 p.

Hartmann M. (1933) Allgemeine Biologie. Eine Einführung in die Lehre vom Leben, zweite Auflage. Jena: Gustav Fischer. 238 p.

Hempel C.G. (1965) Aspects of scientific explanation and other essays in the philosophy of science. Nova Iorque: The Free Press. 504 p.

Hennig W. (1950) Grundzüge einer Teorie der phylogenetischen Systematik. Berlim: Deutscher Zentralverlag. 370 p.

Hennig W. (1965) Phylogenetic systematics. Annual Review of Entomology, 10: 97–116.

Hennig W. (1966) Phylogenetic systematics. Urbana: University of Illinois Press. 263 p.

Hennig W. (1968) Elementos de una sistemática filogenética. Buenos Aires: EUDEBA. 353 p.

Huelsenbeck J.P. & Ronquist F. (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics, 17: 754–755.

Huelsenbeck J.P., Ronquist F., Nielsen R. & Bollback J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294: 2310–2314.

Joshi J. & Edgecombe G.D. (2017) Tracking the variability of phenotypic traits on a molecular phylogeny: an example from scolopendrid centipedes in peninsular India. Organisms Diversity & Evolution, 17(2): 393–408.

Kitching I.J., Forey P.L., Humphries C.J. & Williams D.M. (1998) Cladistics: The Theory and Practice of Parsimony Analysis. The Systematics Association Publication No. 11. New York: Oxford University Press. 228 p.

Laland K.N., Sterelny K., Odling-Smee J., Hoppitt W. & Uller T. (2011) Cause and Effect in Biology Revisited: Is Mayr’s Proximate-Ultimate Dichotomy Still Useful? Science, 334(6062): 1512–1516.

Lankester E.R. (1870) On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History, 6: 35–43.

Lee M.S.Y. & Palci A. (2015) Morphological Phylogenetics in the Genomic Age. Current Biology, 25: R922–R929.

Mahner M. & Bunge M. (1997) Foundations of Biophilosophy. Nova Iorque: Springer-Verlag. 423 p.

Mayr E. (1961) Cause and effect in biology. Science, 131: 1501–1506.

Mayr E. (1969) Principles of systematic zoology. Nova Iorque: McGraw-Hill. 428 p.

Mayr E. (1974) Cladistic analysis and cladistics classification. Journal of Zoological Systematics and Evolutionary Research, 12(1): 94–128.

Michener C.D. & Sokal R. (1957) A quantitative approach to a problem in classification. Evolution, 11(2): 130–162.

Nixon K.C. & Carpenter J.M. (1993) On Outgroups. Cladistics, 9: 413–426.

Nixon K.C. & Carpenter J.M. (2012) On homology. Cladistics, 28: 160–169.

O’Hara R.J. (1993) Systematic generalization, historical fate, and the species problem. Systematic Biology, 42: 231–246.

O'Hara R.J. (1997) Population thinking and tree thinking in systematics. Zoologica Scripta, 26: 323–329.

Omland K.E., Cook L.G. & Crisp M.D. (2008) Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. BioEssays, 30: 854–867.

O’Reilly J.E., Puttick M.N., Parry L., Tanner A.R., Tarver J.E., Fleming J., Pisani D. & Donoghue P.C.J. (2016) Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters, 12: 20160081.

Owen R. (1847) Report on the archetype and homologies of the vertebrate skeleton. Report on the Meeting of the British Association for the Advancement of Science, 16: 169–340.

Page R.D.M. & Charleston M.A. (1998) Trees within trees: phylogeny and historical associations. Tree, 13(9): 356–359.

Page R.D.M. & Holmes E.C. (1998) Molecular Evolution: A Phylogenetic Approach. Oxford: Blackwell Science. 346 p.

Patterson C. (1994) Null or minimal models (p. 173–192). In: Scotland R.W. & Siebert D.J. (Eds). Models In Phylogeny Reconstruction. Oxford: Clarendon Press. 376 p.

Peirce C.S. (1878) Illustrations of the logic of science. Sixth paper. — Deduction, induction, and hypothesis. Popular Science Monthly, 13: 470–482.

Platnick N.I. (1979) Philosophy and the transformation of cladistics. Systematic Zoology, 28: 537–546.

Popper K.R. (1968) Conjectures and Refutations: The Growth of Scientific Knowledge. Nova Iorque: Harper & Row. 417 p.

Popper K.R. (1992) Realism and the aim of science. Nova Iorque: Routledge. 464 p.

Rieppel O. (2003) Semaphoronts, cladograms and the roots of total evidence. Biological Journal of the Linnean Society, 80: 167–186.

Rieppel O. (2016) Willi Hennig as philosopher The Future of Phylogenetic Systematics: The Legacy of Willi Hennig (p. 356–376). In: Williams D., Schmitt M. & Wheeler Q. (Eds). The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Londres: Cambridge University Press. 508 p.

Sereno P.C. (1999) Definitions in phylogenetic taxonomy: Critique and rationale. Systematic Biology, 48: 329–351.

Sereno P.C. (2005) The logical basis of phylogenetic taxonomy. Systematic Biology, 54: 595–619.

Sereno P.C. (2007) Logical basis for morphological characters in phylogenetics. Cladistics, 23: 565–587.

Simakov O., Kawashima T., Marlétaz F., Jenkins J., Koyanagi R., Mitros T. Hisata K., Bredeson J., Shoguchi E., Gyoja F., Yue J., Chen Y., Freeman R.M., Sasaki A., Hikosaka-Katayama T., Sato A., Fujie M., Baughman K.W., Levine J., Gonzalez P., Cameron C., Fritzenwanker J.H., Pani A.M., Goto H., Kanda M., Arakaki N., Yamasaki S., Qu J., Cree A., Ding Y., Dinh H.H., Dugan S., Holder M., Jhangiani S.N., Kovar C.L., Lee S.L., Lewis L.R., Morton D., Nazareth L.V., Okwuonu G., Santibanez J., Chen R., Richards S., Muzny D.M., Gillis A., Peshkin L., Wu M., Humphreys T., Su Y., Putnam N.H., Schmutz J., Fujiyama A., Yu J., Tagawa K., Worley K.C., Gibbs R.A., Kirschner M.W., Lowe C.J., Satoh N., Rokhsar D.S. & Gerhart J. (2015) Hemichordate genomes and deuterostome origins. Nature, 527: 459–465.

Sober E. (1988) Reconstructing the Past: Parsimony, Evolution, and Inference. Massachusetts: MIT Press, Cam- Zootaxa bridge. 265 p.

Sokal R.R. & Sneath P.H.A. (1963) Principles of Numerical Taxonomy. San Francisco: W.H. Freeman and Company. 359 p.

Stevens P.F. (1994) The development of Biological Systematics. Nova Iorque: Columbia University Press. 617 p.

Swofford D.L., Olsen G.J., Waddell P.J. & Hillis D.M. (1996) Phylogenetic inference (p. 407–514). In: Hillis D.M., Moritz C. & Mable B.K. (Eds). Molecular Systematics. Massachusetts: Sinauer Associates. 655 p.

Wiens J.J. (2008) Systematics and Herpetology in the Age of Genomics. BioScience, 58(4): 297–307.

Wiens J.J. (2009) Paleontology, Genomics, and Combined-Data Phylogenetics: Can Molecular Data Improve Phylogeny Estimation for Fossil Taxa? Systematic Biology, 58(1): 87–99.

Williams D.M. & Ebach M.C. (2008) Foundations of Systematic and Biogeography. Berlim: Springer. 309 p.

Williams D.M. & Ebach M.C. (2012) Confusing homologs as homologies: a reply to on homology. Cladistics, 28: 223–224.

Xu X. & Pol D. (2003) Archaeopteryx, paravian phylogenetic analyses, and the use of probability-based methods for palaeontological datasets. Journal of Systematic Palaeontology, 12(3): 323–334.

Zachos F.E. (2016) Tree thinking and species delimitation: Guidelines for taxonomy and phylogenetic terminology. Mammalian Biology, 81: 185–188.

Ziehen T. (1934) Erkenntnistheorie. Zweite Auflage. Erster Teil. Allgemeine Grundlegung der Erkenntnistheorie. Spezielle Erkenntnistheorie der Empfndungstatsachen einschliesslich Raumtheorie. Jena: Gustav Fischer. 958 p.

Zimmerman W. (1931) Arbeitsweise der botanischen phylogenetic und anderer Gruppoerungwissenschaften (p. 941–1053). In: Abderhalden E. (Ed.). Handbuch der biologischen Arbeitsmethoden. Berlim: Urban & Scwarzenber. 1053 p.

Zimmerman W. (1943) Die Methoden der Phylogenetik (p. 20–56). In: Heberer G. (Ed.). Die Evolution der Organismen. Stuttgart: 1. Aufl. G. Fischer, Jena, Germany. 661 p.

Zimmerman W. (1953) Evolution. Geschichte ihrer probleme und erkenntnisse. Berlim: Freiburg und Müchen. 623 p.



  • Não há apontamentos.

Direitos autorais 2017 Autor e Revista mantêm os direitos da publicação

Pesquisa e Ensino em Ciências Exatas e da Natureza
Unidade Acadêmica de Ciências Exatas e da Natureza - CFP - UFCG
Cajazeiras - PB, Brasil
(ISSN 2526-8236)