Rensch’s rule is broken in Cervidae
DOI:
https://doi.org/10.29215/pecen.v3i2.1259Resumo
Resumo: A diferença de tamanho corporal entre machos e fêmeas é conhecida como dimorfismo sexual de tamanho (DST). O surgimento do DST é atribuído na maioria das vezes a processos de seleção sexual, entretanto a seleção natural também pode afetar o DST. Tem se observado em diversos grupos que a intensidade do DST está associada com o tamanho corporal das espécies, padrão conhecido como Regra de Rensch. Nós testamos a regra de Rensch na família Cervidae, um grupo com forte dimorfismo sexual. Analisamos o DST de 35 espécies utilizando análises de regressão tipo II (eixo principal reduzido) filogenética (RMA). Ao analisar a relação entre o tamanho dos machos vs o tamanho das fêmeas observamos que o DST se modifica isometricamente com o aumento do tamanho corporal (RMA = 1.05, p = 0.18). Estes resultados evidenciam que a regra de Rensch não se cumpre nos membros da família Cervidae. Na última década, diversos estudos tem mostrado grupos taxonômicos que não seguem a regra de Rensch. Dado que o tamanho corporal está associado com diversas características ecológicas das espécies, é possível que a associação do tamanho corporal com o DST não seja sempre um efeito causal nos grupos que seguem a Regra de Rensch.
Palavras chave: Dimorfismo sexual de tamanho, mamíferos, RMA filogenético, seleção sexual, tamanho corporal.
Referências
Abouheif E. & Fairbairn D.J. (1997) A Comparative Analysis of Allometry for sexual Size Dimorphism: Assessinf Rensch’s Rule. The American Naturalist, 149(3): 540–562. DOI: 10.1086/286004
Andersson M. (1994) Sexual Selection. Princeton: University Press. 624 p.
Barrio J. (2010) TARUKA Hippocamelus antisensis (d’Orbigny 1834) (p. 77–88). In: Duarte J.M.B. & González S. (Eds). Neotropical Cervidology: Biology and medicine of Latin American deer. Jaboticabal, Brazil: Funep; Gland, Switzerland: IUCN. 393 p.
Blanckenhorn W.U., Dixon A.F.G., Fairbairn D.J., Foellmer M.W., Gibert P., van der Linde K., Meier R., Nylin S., Pitnick S., Schoff C., Signorelli M., Teder T. & Wiklund C. (2007) Proximate Causes of Rensch’s Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time? The American Naturalist, 169(2): 245–257. DOI: 10.1086/510597
Bidau C.J. & Martinez P.A. (2017) Cats and dogs cross the line: domestic breeds follow Rensch’s rule, their wild relatives do not. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding, 21(4): 443–451. DOI: 10.18699/VJ17.263
Clutton-Brock T., Harvey P. & Rudder B. (1977) Sexual dimorphism, socionomic, sex ratio and body weight in primates. Nature, 269: 797–800. DOI: 10.1038/269797a0
Colwell R.K. (2000) Rensch’s Rule Crosses the Line: Convergent Allometry of Sexual Size Dimorphism in Hummingbirds and Flower Mites. The American Naturalist, 156(5): 495–510. DOI: 10.1086/303406
Dale J., Dunn P.O., Figuerola J., Lislevand T., Székely T. & Whittingham L.A. (2007) Sexual selection explains Rensch's rule of allometry for sexual size dimorphism. Proceedings of the Royal Society of London B: Biological Sciences, 274: 2971–2979. DOI: 10.1098/rspb.2007.1043
Darwin C. (1859) On the Origin of Species by Means of Natural Selection. London: John Murray. 502 p.
Darwin C. (1871) The Descent of Man and Selection in Relation to Sex. London: John Murray. 475 p.
Diniz‐Filho J.A.F., Bini L.M., Rodriguez M.A., Rangel T.F.L. & Hawkins B.A. (2007) Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 30(4): 598–608. DOI: 10.1111/j.0906-7590.2007.04988.x
Emlen D.J., Marangelo J., Ball B. & Cunningham C.W. (2005) Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution, 59(5): 1060–1084. DOI: 10.1554/04-642
Fairbairn D.J. (1997) Allometry for Sexual Size Dimorphism : Pattern and Process in the Coevolution of Body Size in Males and Females. Annual Review of Ecology and Systematic, 28: 659–687. DOI: 10.1146/annurev.ecolsys.28.1.659
Fairbairn D.J. (2007) Introduction: the enigma of sexual size dimorphism (p. 27–37). In: Fairbairn D.J., Blanckenhorn W.U. & Székely T. (Eds). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p. DOI: 10.1093/acprof:oso/9780199208784.003.0001
Fairbairn D.J. (2013) Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom. Princenton: Princenton University Press. 312 p.
Fairbairn D.J., Blanckenhorn W.U. & Székely T. (2007) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p. DOI: 10.1093/acprof:oso/9780199208784.001.0001
Felsenstein J. (1985) Phylogenies and the comparative method. The American Naturalist, 125(1): 1–15.
Geist V. (1998) Deer of the World: Their Evolution, Behaviour, and Ecology. Mechanicsburg, PA: Stackpole Books. 421 p.
Gohli J. & Voje K.L. (2016) An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolutionary Biology, 16(222). DOI: 10.1186/s12862-016-0778-x
Hassanin A., Delsuc F., Ropiquet A., Hammer C., Jansen van Vuuren B., Matthee C., Ruiz-Garcia M., Catzeflis F., Areskoug V., Nguyen T.T. & Couloux A. (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biology, 335(1): 32–50. DOI: 10.1016/j.crvi.2011.11.002
Huang S., Drake J.M., Gittleman J.L. & Altizer S. (2015) Parasite diversity declines with host evolutionary distinctiveness: A global analysis of carnivores. Evolution, 69: 621–630. DOI: 10.1111/evo.12611
Isaac J.L. (2005) Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Review, 35: 101–115. DOI: 10.1111/j.1365-2907.2005.00045.x
Jarman P. (1983) Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores. Biological Review, 58: 485–520. DOI: 10.1111/j.1469-185X.1983.tb00398.x
Kappeler P.M. & van Schaik C.P. (2004) Sexual Selection in Primates New and Comparative Perspectives. Cambridge: Cambridge University Press. 300 p.
Lindenfors P., Gittleman J.L. & Jones K.E. (2007) Sexual size dimorphism in mammals (p. 16–26). In: Fairbairn D.J., Blanckenhorn W.U. & Székely T. (Eds). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p.
Martinez P. & Bidau C. (2016) A re-assessment of Rensch’s rule in tuco-tuco (Rodentia: Ctenomydae: Ctenomys) using a phylogentic approach. Mammalian Biology, 81(1): 66–72. DOI: 10.1016/j.mambio.2014.11.008
Martínez P.A., Amado T.F. & Bidau C.J. (2014) A phylogenetic approach to the study of sexual size dimorphism in Felidae and an assessment of Rensch’s rule. Ecosistemas, 23: 27–36. DOI: 10.7818/ECOS.2014.23-1.05
Martinez P.A., Marti D.A., Molina W.F. & Bidau C.J. (2013) Bergmann rule across the Equator: a case study in Cerdocyon thous. Journal of Animal Ecology, 82(5): 997–1008. DOI: 10.1111/1365-2656.12076
Martinez P.A., Pia M.V., Behachar I.A., Molina W.F. & Montoya-Burgos J.I. (2018) The contribution of neutral evolution and adaptive processes in driving phenotipic divergence in a model mammalian species, the Andean fox Lycalopex culpaeus. Journal of Biogeography, 45(5): 1114–1125. DOI: 10.1111/jbi.13189
Martinez P.A., Zurano J.P., Amado T.F., Penone C., Betancur-R R., Bidau C.J. & Jacobina U.P. (2015) Chromosomal diversity in tropical reef fishes is related to body size and depth range. Molecular Phylogenetics and Evolution, 93: 1–4. DOI: 10.1016/j.ympev.2015.07.002
McPherson F.J. & Chenoweth P.J. (2012) Mammalian sexual dimorphism. Animal Reproduction Science, 131: 109–22. DOI: 10.1016/j.anireprosci.2012.02.007
Miller C.W. (2013) Sexual Selection: Male-male Competition (p. 641–646). In: Losos J.B., Baum D.A., Futuyma D.J., Hoekstra H.E., Lenski R.E., Moore A.J., Peichel C.L., Schluter D. & Whitlock M.C. (Eds). The Princenton Guide of Evolution. Princenton: Princenton University Press. 853 p.
Moran S. & Poulin R. (1998) Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology, 12(6): 717–727. DOI: 10.1023/A:1006537600093
Nowak R.M. (1999) Walker's Mammals of the World. Baltimore: John Hopkins University Press. 1936 p.
Olalla-Tárraga M.A., Torres-Romero E.J., Amado T.F. & Martinez P.A. (2015) Phylogenetic path analysis reveals the importance of niche-related biological traits on geographic range size in mammals. Global Change Biology, 21: 3194–3196. DOI: 10.1111/gcb.12971
Payne J. & Francis C. (1985) A Field Guide to the Mammals of Borneo. Malaysia: Sabah Society. 332 p.
Pérez-Barbería F.J., Gordon I.J. & Pagel M. (2002) The origins of sexual dimorphism in body size in ungulates. Evolution, 56: 1276–1285. DOI: 10.1111/j.0014-3820.2002.tb01438.x
Peters R.H. (1983) The Ecological Implications of Body Size. New York: Cambridge University Press. 329 p.
Piross I.S., Harnos A. & Rózsa L. (2019) Rensch’s rule in avian lice: contradictory allometric trends for sexual size dimorphism. Scientific Reports, 9: 7908. DOI: 10.1038/s41598-019-44370-5
Plard F., Bonenfant C. & Gaillard J.M. (2011) Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos, 120(4): 601–606. DOI: 10.1111/j.1600-0706.2010.18934.x
Rangel T.F., Colwell R.K., Graves G.R., Fucikova K., Rahbek C. & Diniz-Filho J.A.F. (2015) Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution, 69: 1301–1312. DOI: 10.1111/evo.12644
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available in: http://www.R-project.org
Reiss M.J. (1989) The Allometry of Growth and Reproduction. Cambridge: Cambridge University Press. 200 p. DOI: https://doi.org/10.1017/CBO9780511608483
Rensch B. (1950) Die Abhangigkeit der relativen Sexualdifferenz von der Korpergrosse. Bonner Zoologische Beiträge, 1: 58–69.
Revell L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217–223. DOI: 10.1111/j.2041-210X.2011.00169.x
Smith F.A. & Lyons S.K. (2011) How big should a mammal be? A macroecological look at mammalian body size over space and time. Proceeding Royal Society B, 366: 2364–2378. DOI: 10.1098/rstb.2011.0067
Smith F.A. & Lyons S.K. (2013) Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group. Chicago: The University of Chicago Press. 280 p.
Sokal R.R. & Rohlf F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research. 3° edition. New York: W.H. Freeman and Com. 887 p.
Stevens R.D. & Platt R.N. (2015) Patterns of secondary sexual size dimorphism in New World Myotis and a test of Rensch’s rule. Journal of Mammalogy, 96(6): 1128–1134. DOI: 10.1093/jmammal/gyv120
Stuart-Fox D.M. & Ord T.J. (2004) Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proceeding Royal Society B, 271: 2249–2255. DOI: DOI: 10.1098/rspb.2004.2802
Tobias J.A., Montgomerie R. & Lyon B.E. (2012) The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philosophical Transaction of Royal Society London, 367: 2274–2293. DOI: 10.1098/rstb.2011.0280
Wiles G.J., Buden D.W. & Worthington D.J. (1999) History of introduction, population status, and management of Philippine deer (Cervus mariannus) on Micronesian islands. Mammalia, 63(2): 193–215.
Downloads
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos / Authors who publish in this journal agree to the following terms:
A) Autor(es) e o periódico mantêm os direitos da publicação; os autores concedem ao periódico o direito de primeira publicação, sendo vedada sua reprodução total ou parcial sob qualquer caráter de ineditismo; qualquer utilização subsequente de trechos de manuscritos (e.g., figuras, tabelas, gráficos etc.) publicados na Pesquisa e Ensino em Ciências Exatas e da Natureza deve reconhecer a autoria e publicação original / Author (s) and the journal maintain the rights of publication; the authors grant the journal the right of first publication, being prohibited their total or partial reproduction in any character of novelty; any subsequent use of excerpts from manuscripts (e.g., figures, tables, graphics, etc.) published in Research and Teaching in Exact and Natural Sciences must acknowledge the original authorship and publication.
B) Autores tem o direito de disseminar a própria publicação, podendo, inclusive disponibilizar o PDF final do trabalho em qualquer site institucional ou particular, bem como depositar a impressão da publicação em bibliotecas nacionais e internacionais / Authors have the right to disseminate the publication itself, and may also make available the final PDF of the work in any institutional or private site, as well as depositing the printing of the publication in national and international libraries.