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Alguns comentários matemáticos sobre o Analytic Hierarchy Process: Parte II - Análise prática 
 

Resumo: O Analytic Hierarchy Process (AHP) é um método de apoio à decisão tendo como uma das 

maiores críticas o efeito de reversão de ranking. Uma nova análise matemática deste método é realizada 

em 22 aplicações. Duas formulações do AHP mostram-se equivalentes em solução e comportamento na 

análise de sensibilidade. A análise de sensibilidade realizada inclui uma parte típica usando o elemento 

crítico e duas novas análises usando o vetor coluna crítica e o número de condicionamento. Em alguns 

casos, o AHP é mais sensível a perturbações no vetor coluna crítico do que a perturbações no elemento 

crítico. O vetor coluna crítico é único, independentemente da perturbação ser relativa ou absoluta. A 

análise de sensibilidade usando o número de condicionamento revela que a reversão de ranking sempre 

existirá para todo método linear. Transformações algébricas para matrizes com posto incompleto são 

realizadas para obter um método mais estável e confiável. 
 

Palavras chave: Análise múltiple critérios, análise de decisão, reversão de ranking, sistemas lineares de 

equações, análise de sensibilidade, tomada de decisão. 

 

Abstract: The Analytic Hierarchy Process (AHP) is a decision making method, which has as its greatest 

criticism the rank reversal effect. A new mathematical analysis of this method is performed in 22 

applications. Two formulations of the AHP show to be equivalent in solution and behavior in the 

sensitivity analysis. The sensitivity analysis carried out includes a standard part using the critical 

element, and two new analyzes using the critical column vector and condition number. In some cases, 

AHP is more sensitive to perturbations in the critical column vector than to perturbations in the critical 

element. The critical column vector is unique independently of whether the perturbation is relative or 

absolute. The sensitivity analysis using the condition number reveals that the rank reversal will always 

exist for every linear method. Algebraic transformations for deficient rank matrix are performed to 

obtain a more stable and reliable method. 
 

Key words: Multiple criteria analysis, decision analysis, rank reversal, linear systems of equations, 

sensitivity analysis, decision making. 
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Introdução 
 

The Analytic Hierarchy Process (AHP) is a widely used decision making method. The 

method consists of four steps: Modeling, Valuation, Prioritization and Synthesis. Since its 

inception, the AHP has been the target of some criticism. The effect called rank reversal is one 

of the criticisms associated with the results synthesis procedure, which is related to the 

sensitivity analysis and greatly impacts the reliability and robustness of the method. For reasons 

of space, the research was divided into two parts. In Part I (Alvarez et al. 2021), the Synthesis of 

the AHP is formulated in terms of a linear system of equations. In this way it is possible to 

develop a theoretical basis for the new mathematical analysis of the method. This Part II is the 

continuation of the research, in which the theoretical basis is applied to 22 practical cases of 

AHP. The main objective of this work is to put into practice the theoretical development carried 

out in Part I. That is, the classical formulation of the AHP will be confronted with equivalent 

formulations. This comparison will be made with sensitivity analysis that allows delimiting the 

region where the rank reversal effect occurs. Furthermore, through an example it is shown that 

algebraic transformations to condense the deficient rank matrices add greater stability to the 

solution of the AHP. Thus, the decision made with the help of the AHP becomes more reliable 

and robust. Therefore, to save space here an introduction with bibliographic revision as usual is 

not presented. The Introduction with the entire literature review on the topic presented in 

Alvarez et al. (2021) is completely applicable in this part of the research, as Part II is a 

continuation of Part I. 

The notation used will be the same as shown in Alvarez et al. (2021). That is, the notation 

used will be bold capital letter for matrices (𝐆𝐴x𝐶) and vectors (𝐁𝐶x1). To avoid 

misunderstandings the dimensions are explicitly given in the sub-index. Bold lowercase letters 

denote the matrix entries (𝐠𝑖𝑗) and vector components (𝐛𝑖). 

This Part II is organized as follows. Mathematical formulations and applications of the 

AHP are presented in next Section. The following Section presents standard and a new 

sensitivity analysis of the method. Posteriorly, algebraic transformations for deficient rank 

matrix are introduced. Interesting comments about the rank reversal effect are presented in 

next Section. Finally, the last Section contains some conclusions. 

 

Mathematical formulations and applications of the AHP 
 

The new mathematical analysis of the AHP is focused only on the Synthesis step (Alvarez 

et al. 2021). This analysis can be applied to any decision-making methods based on matrices and 

linear systems of equations whose synthesis can be formulated as equation (1). Suppose C 

criteria with A alternatives, let 𝐁𝐶x1  be the criteria priority vector, let 𝐆𝐴x𝐶  be the matrix whose 

columns correspond to the priorities of the alternative with respect to each criterion, and let 𝐗𝐴x1 

be the overall priorities for the alternatives. As presented in Alvarez et al. (2021), there are two 

formulations for AHP. First, the original formulation given by the equation (1). Second, the 

equivalent formulation given by the equation (2). In Alvarez et al. (2021) two appropriate 

choices for 𝐂𝐶x𝐴 were described by equations (3) and (4), where the superscript [o]T denote the 

transpose of a vector or matrix, that is [𝐆𝐴x𝐶 ]T = 𝐆𝐶x𝐴
𝑇 . 
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Thus, to confront the formulations, the following solutions will be considered: 𝐗𝐴x1
𝑂𝑅𝐺 , 

𝐗𝐴x1
𝐸𝑄𝑉1

, 𝐗𝐴x1
𝐸𝑄𝑉2

 and 𝐗𝐴x1
𝐸𝑄𝑉3

. 𝐗𝐴x1
𝐸𝑄𝑉1

 denotes the solution of the equivalent formulation for 𝐂𝐶x𝐴 given 

by the equation (3), and 𝐗𝐴x1
𝐸𝑄𝑉2

 corresponds to the solution of (2) for the choice (4). The 

computational algorithms to calculate the solutions were implemented in the MATLAB® 

software. For the solutions 𝐗𝐴x1
𝐸𝑄𝑉1

 and 𝐗𝐴x1
𝐸𝑄𝑉2

 the MATLAB®’s backslash command was used, 

which uses different numerical methods according to the matrix properties of the linear system. 

The solution 𝐗𝐴x1
𝐸𝑄𝑉3

 corresponds to the equivalent formulation for the choice (4) using the 

MATLAB®’s 𝑝𝑖𝑛𝑣(o) function. This function returns the pseudo-inverse of 𝐂𝐶x𝐴 using SVD 

decomposition. Further details of MATLAB®’s functions can be found in Yang et al. (2005) and 

Moler (2008). 

For case analysis, 22 applications of the AHP found in the literature were chosen 

considering two restrictions. First, applications whose Synthesis process was carried out through 

additive aggregation. Second, applications in which the columns of 𝐆𝐴x𝐶  and 𝐁𝐶x1 were formed 

by normalized eigenvectors. From these applications, the matrix 𝐆𝐴x𝐶  and the vector 𝐁𝐶x1 were 

extracted as input data for the calculations. 

Table 1 shows some peculiarities of the 22 applications of AHP analyzed. The first column 

corresponds to the reference of the application case. In the second and third columns the 

dimensions of 𝐆𝐴x𝐶  and K ≡ rank (𝐆𝐴x𝐶) are shown, respectively. Note that when K < min{C,A} 

the matrix is rank deficient, and one application check this condition (Koksal & Ozmutaf 2009). 

The fourth column shows whether the system corresponding to the equivalent formulation is 

square (sqr), overdetermined (ovt) or underdetermined (udt). In all overdetermined cases (C > A) 

the system is consistent. This is, the vector 𝐃𝐶x1 is a linear combination of the columns of 𝐂𝐶x𝐴, 

and as 𝐂𝐶x𝐴 is full rank then the system has a unique solution. In all underdetermined cases (C < 

A) the linear system has infinite solutions, but the particular choices (3) and (4) for 𝐂𝐶x𝐴 make 

the solution 𝐗𝐴x1
𝐸𝑄𝑉

 = 𝐗𝐴x1
𝑂𝑅𝐺 . The fifth and sixth columns have the smallest angle between the row 

or column vectors of 𝐆𝐴x𝐶 , where the index i and j represent the respective rows or columns 

(Alvarez et al. 2021). Similarly, the seventh and eighth columns correspond to the smallest angle 

between the row or column vectors of 𝐂𝐶x𝐴 for the choice given by the equation (3). If 𝐂𝐶x𝐴 = 

𝐆𝐶x𝐴
𝑇  the angles coincide with those of 𝐆𝐴x𝐶  by exchanging rows for columns. 

In addition, it should be mentioned that the solutions 𝐗𝐴x1
𝐸𝑄𝑉

 may differ depending on the 

numerical method used to solve the linear system. Mathematical and computational details on 

numerical methods for the linear system can be found in Strang (1988), Demmel (1997), Lee 

(2012), Gentle (2007), Quarteroni & Saleri (2007) and Golub & Van Loan (2013). However, in all 

cases of application 𝐗𝐴x1
𝐸𝑄𝑉1

 =  𝐗𝐴x1
𝐸𝑄𝑉2

 = 𝐗𝐴x1
𝐸𝑄𝑉3

 = 𝐗𝐴x1
𝑂𝑅𝐺 . 

An important aspect to highlight in Table 1 is about deficient rank as mentioned in 

Alvarez et al. (2021). Angles equal to zero were highlighted in bold, indicating that there are 

parallel rows or columns. In the case of Koksal & Ozmutaf (2009), the equivalent formulation 

with the choice 𝐂𝐶x𝐴 = 𝐆𝐶x𝐴
𝑇  shows θ13

𝑚𝑖𝑛
𝐆
cl  = 0. That is, the hyperplanes corresponding to rows 1 

and 3 of 𝐆𝐶x𝐴
𝑇  are parallel, and this is the cause of the deficient rank. In the cases of Cabała 

(2010), Gomede & Barros (2012) and Franco et al. (2017), the zero angles do not cause deficient 

rank because they are present in the largest dimension of 𝐆𝐴x𝐶  or 𝐂𝐶x𝐴. In the case of Gomede & 

Barros (2012), the zero angle is present six times in the largest dimension of 𝐆𝐴x𝐶  or 𝐂𝐶x𝐴. That is, 

three columns of 𝐆𝐴x𝐶  are equal (𝐙4x1
2  = 𝐙4x1

3  = 𝐙4x1
4 ), and also other four columns of 𝐆𝐴x𝐶  are 

equal (𝐙4x1
6  = 𝐙4x1

7  = 𝐙4x1
8  = 𝐙4x1

9 ).  

Another important aspect to highlight in Table 1 is about almost deficient rank as 

mentioned in Alvarez et al. (2021). For example, angles less than 2° have been highlighted by 

underlining. These small angles indicate that there are almost parallel rows or columns, which 

can become parallel due to rounding/truncation errors in the calculations (Alvarez et al. 2021). 

The cases of Gomede & Barros (2012) and Giri & Nejadhashemi (2014) are examples of almost 

deficient rank. In the cases of Al-Harbi (2001), de Abreu et al. (2000), de Paula & Mello (2013)
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and Benítez et al. (2019), these small angles cannot motivate almost deficient rank because they 

are present in the largest dimension of 𝐆𝐴x𝐶  or 𝐂𝐶x𝐴. Other details can be found in de Almeida 

(2019). 

 

Table 1. AHP application cases. 
 

 
 

 

Sensitivity analysis of the AHP 
 

As presented in Alvarez et al. (2021), changes or errors in 𝐁𝐶x1 and/or 𝐆𝐴x𝐶  imply changes 

in 𝐗𝐴x1
𝑂𝑅𝐺  and 𝐗𝐴x1

𝐸𝑄𝑉
. It is important to note that there are two types of errors in this analysis. First, 

uncertainties in the construction of 𝐁𝐴x1 and/or 𝐆𝐴x𝐴. Second, inaccuracies by the round-off 

errors when performing calculations due to computer finite precision arithmetic. These changes 

or errors can be estimated via sensitivity analysis. Here two sensitivity analyzes are presented. 

First, the typical sensitivity analysis in the context of the AHP, where only one entry of 𝐆𝐴x𝐶  or 

𝐁𝐶x1  is perturbed, which are called critical element of 𝐆𝐴x𝐶  and critical criterion of 𝐁𝐶x1, 

respectively (Triantaphyllou & Sánchez 1997; Pankratova & Nedashkovskaya 2016). Second, a 

new sensitivity analysis in the context of the AHP, where one column vectors of 𝐆𝐴x𝐶  is 

perturbed, which will be called critical column vector (Alvarez et al. 2021). 

 

Typical sensitivity analysis of the AHP 
 

This sensitivity analysis is based on the ideas presented in Triantaphyllou & Sánchez 

(1997), where the minimum relative/absolute perturbations are determined in a single element 

of 𝐁𝐶x1 or 𝐆𝐴x𝐶  that cause any change in ranking of 𝐗𝐴x1
𝑂𝑅𝐺  and 𝐗𝐴x1

𝐸𝑄𝑉
. However, to determine the 

minimum relative/absolute perturbations and the most sensitive elements, a computational code
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in MATLAB® was developed following the Algorithm 1. This algorithm is based on the idea of 

seeking the minimum perturbation, scanning element by element, but considering a range of 

viable perturbations and an update in the data. The validation of this code was performed with 

Pankratova & Nedashkovskaya (2016), which in essence is a generalization of the methodology 

proposed in Triantaphyllou & Sánchez (1997). In addition, the results of this standard sensitivity 

analysis are in agreement with the results of the SuperDecisions software. 

Considering the Definition 1 in Alvarez et al. (2021) the following notation will be used. 

The minimum relative and absolute perturbations in 𝐆𝐴x𝐶  are Δg𝑖𝑗
𝑟𝑙𝑡  and Δg𝑖𝑗

𝑎𝑏𝑠 , respectively. The 

critical element obtained via Δg𝑖𝑗
𝑟𝑙𝑡  is g𝑖𝑗

𝑟𝑙𝑡 , and the critical element obtained via Δg𝑖𝑗
𝑎𝑏𝑠 is g𝑖𝑗

𝑎𝑏𝑠 . The 

smallest and largest magnitude entries for 𝐆𝐴x𝐶  are 𝐠𝑖𝑗
min and 𝐠𝑖𝑗

max, respectively. Similarly, the 

minimum relative and absolute perturbations in 𝐁𝐶x1 are Δ𝐛𝑗
𝑟𝑙𝑡  and Δ𝐛𝑗

𝑎𝑏𝑠 , respectively. The 

critical element obtained via Δ𝐛𝑗
𝑟𝑙𝑡  is 𝐛𝑗

𝑟𝑙𝑡 , and the critical element obtained via Δ𝐛𝑗
𝑎𝑏𝑠  is 𝐛𝑗

𝑎𝑏𝑠 . The 

smallest and largest magnitude entries for 𝐁𝐶x1 are 𝐛𝑗
min and 𝐛𝑗

max, respectively. Considering δ = 

10−6 in the Algorithm 1 the minimum perturbations and the critical elements for each case of 

application of the AHP were determined. The results are shown in Figures 1 and 2. 
 

 
 

 
Figure 1. Positional analysis of the critical element of 𝐁𝐶x1. 
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Figure 2. Positional analysis of the critical element of 𝐆𝐴x𝐶 . 

 

In Figure 1, for the critical element in 𝐁𝐶x1 it can be noted that, among the 22 

applications, in 13 applications 𝐛𝑗
𝑟𝑙𝑡   = 𝐛𝑗

𝑚𝑎𝑥 , and in 6 applications 𝐛𝑗
𝑎𝑏𝑠 = 𝐛𝑗

𝑚𝑖𝑛 . These results are 

in accordance with conclusions found in Triantaphyllou & Sánchez (1997). Moreover, in 9 

applications 𝐛𝑗
𝑟𝑙𝑡  = 𝐛𝑗

𝑎𝑏𝑠 , and in 13 applications 𝐛𝑗
𝑟𝑙𝑡  ≠ 𝐛𝑗

𝑎𝑏𝑠 . In Figure 2, for the critical element in 

𝐆𝐴x𝐶  there are no applications with 𝐠𝑖𝑗
𝑟𝑙𝑡  = 𝐠𝑖𝑗

𝑚𝑎𝑥 , in 3 applications 𝐠𝑖𝑗
𝑎𝑏𝑠  = 𝐠𝑖𝑗

𝑚𝑖𝑛 , in 5 applications 

𝐠𝑖𝑗
𝑟𝑙𝑡  = 𝐠𝑖𝑗

𝑎𝑏𝑠, and in 17 applications 𝐠𝑖𝑗
𝑟𝑙𝑡  ≠ 𝐠𝑖𝑗

𝑎𝑏𝑠 . 

Figure 3 shows the relative values of the minimum perturbations for each application. 

Figure 4 shows the absolute values of the minimum perturbations for each application. The 

dashed line y = 0 indicates minimum perturbation equal to zero. Therefore, the closer to this line 

the minimum perturbation is, the more sensitive to the rank reversal is the application. In 

general, considering the relative and absolute perturbations, the applications (Oliveira 2013; Su 

et al. 2014; Benítez et al. 2019) are less sensitive to the rank reversal. In the applications 

(Trevizano & Freitas 2005; Giri & Nejadhashemi 2014; Mendes et al. 2014; Alves & Alves 2015) it 

is possible to notice the following intriguing behavior. If in relative terms Δ𝐛𝑗
𝑟𝑙𝑡  = Δ𝐠𝑖𝑗

𝑟𝑙𝑡 or very 

close, then in absolute terms Δ𝐛𝑗
𝑎𝑏𝑠 = Δ𝐠𝑖𝑗

𝑎𝑏𝑠 and the perturbations change signals. That is, if Δ𝐛𝑗
𝑟𝑙𝑡  

≃ Δ𝐠𝑖𝑗
𝑟𝑙𝑡  ≶ 0, then Δ𝐛𝑗

𝑎𝑏𝑠 ≃ Δ𝐠𝑖𝑗
𝑎𝑏𝑠  ≷ 0. The opposite sentence is not true. 

 

 
 

Figure 3. Relative minimal perturbations in the critical elements of 𝐁𝐶x1 and 𝐆𝐴x𝐶 . 
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Figure 4. Absolute minimal perturbations in the critical elements of 𝐁𝐶x1 and 𝐆𝐴x𝐶 . 

 

To numerically exemplify the great sensitivity in some AHP applications, consider the 

case of de Paula & Mello (2013), which corresponds to the point (case 5, −0.3320) of the relative 

minimum perturbations in Figure 3. In this case, a reduction of approximately 0.3320% in 𝐠41 is 

sufficient to invert the priorities in the alternatives. Note that alternatives 3 and 4 of the original 

solution 𝐗𝐴x1
𝑂𝑅𝐺  = [𝐀6 𝐀5 𝐀4 𝐀3 𝐀2 𝐀1]T are switched to the perturbed solution 𝐗𝐴x1

𝑃𝑇𝐵  = 

[𝐀6 𝐀5 𝐀3 𝐀4 𝐀2 𝐀1]T. This hypersensitivity shows that small variations in the main eigenvector 

of the local judgment matrix cause rank reversal when the variations occur in the critical 

element. 

Finally, it is possible to conclude that there is no rule or law that indicates the critical 

element depending on the type of perturbation used. However, the empirical conclusions 

present in Triantaphyllou & Sánchez (1997) can be considered as a trend, although they are not 

always verified. In addition, the critical element obtained with the relative perturbation may be 

different from the critical element obtained with the absolute perturbation. 
 

New sensitivity analysis of the AHP 
 

In essence, most of the sensitivity analyzes of the AHP are similar to those performed in 

the subsection above. For this reason it was called the typical sensitivity analysis of the AHP. It 

consists in finding the critical element, in relative or absolute terms, and estimating the smallest 

perturbation that causes the rank reversal (Triantaphyllou & Sánchez 1997). However, this type 

of analysis does not estimate the sensitivity of the method with respect to vectors of priorities of 

the alternative with respect to each criterion or eigenvectors. That is, although it is possible to 

identify the most sensitive element (critical alternative or criterion), it is not possible to identify 

the most sensitive or critical eigenvector, even if this originates from judgments considered 

consistent. In Alvarez et al. (2021) it was suggested that estimating the sensitivity of the 

formulation with respect to the critical eigenvector may be as important as estimating the 

sensitivity with respect to the critical element. 

Considering the Definition 1 in Alvarez et al. (2021) the following notation will be used. 

The column vector of 𝐆𝐴x𝐶  obtained after minimum relative perturbation in the critical element 

𝐠𝑖𝑗
𝑟𝑙𝑡  and normalization is 𝐙𝐴×1

𝑗,𝑟𝑙𝑡
, where j indicates the column of 𝐆𝐴x𝐶 . The column vector of 𝐆𝐴x𝐶  

obtained after minimal absolute perturbation in the critical element 𝐠𝑖𝑘
𝑎𝑏𝑠 and normalization is 

𝐙𝐴×1
𝑘,𝑎𝑏𝑠 . The critical column vector of 𝐆𝐴x𝐶  is denoted by 𝐙𝐴×1

𝑗,𝑐𝑟𝑡
. This vector can be understood to 

the column vector 𝐙𝐴×1
𝑗

 that causes any change in ranking of 𝐗𝐴x1
𝑂𝑅𝐺  with the smallest possible 

∥Δ𝐙𝐴×1
𝑗

∥2/∥𝐙𝐴×1
𝑗

∥2, and it is determined by equation (5) 
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where 𝐙𝐴×1
𝑙,𝑝𝑡𝑏

 denotes the perturbed column vector. It must be said that in all cases of application 

of the AHP the critical column vector found with relative perturbation coincides with the one 

found with absolute perturbation. Deterministic, heuristic or stochastic methods can be used to 

determine the column vector, which when perturbed entirely minimizes the error 

∥Δ𝐙𝐴×1
𝑙 ∥2/∥𝐙𝐴×1

𝑙 ∥2 for all 𝑙. Here, a stochastic method was used, where Δ𝐙𝐴×1
𝑙,𝑟𝑑𝑚 denotes the 

random column vector, which is obtained by randomly perturbing all the components of 𝐙𝐴×1
𝑙 . 

The Algorithm 2 shows the idea of this stochastic method. The idea is to randomly 

generate a sample of 𝑄 vectors that are uniformly distributed in a region close to the 

unperturbed vector 𝐙𝐴×1
𝑙 . All of these vectors 𝐙𝐴×1

𝑙,𝑝𝑡𝑏
 have the same dimension and are 

normalized. The generation of these random vectors is stopped when 10 × 𝑄 vectors that cause 

rank reversals with an error greater than 𝐸𝑟𝑟𝑜𝑟𝑚𝑖𝑛  are counted. This is the stopping criterion for 

the loop. 

 

 

 
 

 

 

The critical column vector will be the one with the smallest relative error between 𝐙𝐴×1
𝑗,𝑟𝑙𝑡

, 

𝐙𝐴×1
𝑘,𝑎𝑏𝑠 and 𝐙𝐴×1

𝑙,𝑟𝑑𝑚 . For example, consider the case present in Cabała (2010), which originally has 

the column vector 𝐙3×1
6 . When a minimum relative perturbation of −19.7355% is made in 𝐠16

𝑟𝑙𝑡 , 

the perturbed vector after normalization becomes 𝐙3×1
6,𝑟𝑙𝑡 , and the less priority alternative that was 

previously 𝐀2  becomes 𝐀1. When an absolute minimum perturbation of 0.0535 is made in 𝐠26
𝑎𝑏𝑠, 

the perturbed vector after normalization becomes 𝐙3×1
6,𝑎𝑏𝑠, and a similar inversion of the 

alternatives occurs. This same rank reversal also occurs when 𝐙3×1
6  becomes 𝐙3×1

6,𝑟𝑑𝑚, where 𝐙3×1
6,𝑟𝑑𝑚 

is obtained from 𝐙3×1
6  with the Algorithm 2 by randomly perturbing all its components. 

However, as 𝐙3×1
6,𝑟𝑑𝑚 has the smallest ∥Δ𝐙3×1

6 ∥2/∥𝐙3×1
6 ∥2 among the three mentioned perturbations, 

then this vector will be considered the critical column vector of 𝐆𝐴x𝐶 . The details of this example 

are described in Table 2. 
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Table 2. Perturbations in the column vectors of the case (Cabała 2010). 
 

 
 

 

Figure 5 shows the data in Table 3, where all 22 analyzed applications are compared. In 

several cases it is possible to notice that the relative errors of the randomly generated vectors are 

below the relative errors generated by minimal relative or absolute perturbations. That is, in 

several cases the AHP is more sensitive to perturbations in the eigenvector as a whole than to 

perturbations in the critical element of 𝐆𝐴x𝐶 . In addition, observing the Table 3, it is possible to 

notice two peculiarities about the j position of the critical column vector 𝐙𝐴×1
𝑗,𝑐𝑟𝑡

. First, it can be 

noted that the column that generates the lowest 
∥Δ𝐙𝐴×1

𝑗,𝑟𝑙𝑡
∥2

∥𝐙𝐴×1
𝑗

∥2
 may differ from the column with the 

lowest 
∥Δ𝐙𝐴×1

𝑘,𝑎𝑏𝑠
∥2

∥𝐙𝐴×1
𝑘 ∥2

, that is, j ≠ 𝑘 (Al-Harbi 2001; Lucena & Mori 2018; Benítez et al. 2019). This result 

was expected by the sensitivity analysis carried out in the previous section. Second, the j position 

associated with 𝐙𝐴×1
𝑗,𝑐𝑟𝑡

 tends to match the column that generates the smallest 
∥Δ𝐙𝐴×1

𝑘,𝑎𝑏𝑠
∥2

∥𝐙𝐴×1
𝑘 ∥2

. However, 

in the cases (de Paula & Mello 2013; Giri & Nejadhashemi 2014; Damdinsuren & Ishdamba 

2017) the column where the critical element is located does not match the column j of 𝐙𝐴×1
𝑗,𝑐𝑟𝑡

. 

This indicates that the critical element does not necessarily belong to the critical column vector. 

In most cases 
∥Δ𝐙𝐴×1

𝑘,𝑎𝑏𝑠
∥2

∥𝐙𝐴×1
𝑘 ∥2

  ≤  
∥Δ𝐙𝐴×1

𝑗,𝑟𝑙𝑡
∥2

∥𝐙𝐴×1
𝑗

∥2
, however in the case (Oliveira 2013) 

∥Δ𝐙𝐴×1
𝑗,𝑟𝑙𝑡

∥2

∥𝐙𝐴×1
𝑗

∥2
 ≤ 

∥Δ𝐙𝐴×1
𝑘,𝑎𝑏𝑠

∥2

∥𝐙𝐴×1
𝑘 ∥2

. In 

addition, in some cases 
∥Δ𝐙𝐴×1

𝑙,𝑟𝑑𝑚
∥2

∥𝐙𝐴×1
𝑙 ∥2

 ≤ 
∥Δ𝐙𝐴×1

𝑘,𝑎𝑏𝑠
∥2

∥𝐙𝐴×1
𝑘 ∥2

, and in other cases 
∥Δ𝐙𝐴×1

𝑘,𝑎𝑏𝑠
∥2

∥𝐙𝐴×1
𝑘 ∥2

 ≤ 
∥Δ𝐙𝐴×1

𝑙,𝑟𝑑𝑚
∥2

∥𝐙𝐴×1
𝑙 ∥2

. This indicates 

that to find the critical column vector it is not sufficient to make the perturbation only in the 

critical element, but also in all the components of the column vector.   

 
 

 

 
 

Figure 5. Minimum perturbations in column vectors of 𝐆𝐴x𝐶 : relative and absolute perturbations in the 

critical element (𝐙𝐴×1
𝑗,𝑟𝑙𝑡

 and 𝐙𝐴×1
𝑗,𝑎𝑏𝑠

), and perturbations in the random column vector (𝐙𝐴×1
𝑗,𝑟𝑑𝑚

). 
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Table 3. Perturbations in 𝐆𝐴x𝐶  to find the critical column vector. 
 

 
 

 

Sensitivity analysis via condition number 
 

As presented in Alvarez et al. (2021) the condition number allows estimating a measure of 

the sensitivity of a linear method. Thus, the higher the condition number of the matrix, the 

more sensitive this formulation will be to perturbations in its input data. This type of sensitivity 

analysis allows us to estimate how uncertainties and/or inaccuracies impact the solution of the 

linear formulation. Within the scope of AHP, this analysis can be applied to its two formulations: 

original and equivalent. 

The theoretical developments carried out in Alvarez et al. (2021) will be shown here in 

graphical form. The central idea is to plot graphs, whose 𝑥 axis represents the relative error of 

the input data 
∥Δ𝐆𝐴x𝐶∥𝑚

∥𝐆𝐴x𝐶∥𝑚
 or 

∥Δ𝐁𝐶x1∥𝑚

∥𝐁𝐶x1∥𝑚
, and the 𝑦 axis represents the relative error in the solution 

∥Δ𝐗𝐴×1
𝑂𝑅𝐺∥𝑚

∥𝐗𝐴×1
𝑂𝑅𝐺∥𝑚

 or 
∥Δ𝐗𝐴×1

𝐸𝑄𝑉
∥𝑚

∥𝐗𝐴×1
𝐸𝑄𝑉

∥𝑚
. Two ways of generating these relative errors are considered: (I) variations on 

the critical element of 𝐆𝐴x𝐶  (𝐠𝑖𝑗
𝑎𝑏𝑠) or 𝐁𝐶x1  (𝐛𝑗

𝑎𝑏𝑠) with absolute perturbations increased in δ = 10−6, 

(II) variations on the entire critical column vector with random perturbations. 

In all plotted graphs, there will be two vertical lines determined by the critical element of 

𝐆𝐴x𝐶  or 𝐁𝐶x1, called Rank Reversals (1) and Bound of infeasible. The vertical line Rank Reversals 

(1) corresponds to the smallest 
∥Δ𝐆𝐴x𝐶∥2

∥𝐆𝐴x𝐶∥2
 or 

∥Δ𝐁𝐶x1∥2

∥𝐁𝐶x1∥2
 value from which the rank reversal occurs 

when only the critical element is perturbed in the column vector. Meanwhile, the vertical line 

Bound of infeasible corresponds to the limit value of viable perturbations of the critical element. 

In the context of the AHP, a perturbation is considered viable if the vectors that are generated 

can be normalized with componentes in the range ]0,1[ and not very small values (𝐠𝑖𝑗  or 𝐛𝑗  >
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0.001). Thus, each graph is divided into three regions. First, the region before the vertical line 

Rank Reversals (1), where perturbations in critical element do not yet generate rank reversal. 

Second, the region between the vertical lines Rank Reversals (1) and Bound of infeasible, where 

rank reversal exists. Third, the region after the vertical line Bound of infeasible, where rank 

reversal occurs with perturbed vectors that are not viable for AHP. The third vertical line is 

called Rank Reversals (2), and it is determined by the critical column vector. This line 

corresponds to the smallest 
∥Δ𝐆𝐴x𝐶∥2

∥𝐆𝐴x𝐶∥2
 or 

∥Δ𝐁𝐶x1∥2

∥𝐁𝐶x1∥2
 value from which the rank reversal occurs when 

all components of the critical column vector are perturbed. 

Following the development described in Alvarez et al. (2021), the theoretical limit of the 

relative error of the solution defined by the equations (6) and (7) is plotted in each case. Five 

matrix norms ∥ ○ ∥𝑚 were used to determine the relative error, which are presented in Table 4 

for an arbitrary matrix 𝐂𝐶xA (Strang 1988; Demmel 1997; Gentle 2007; Quarteroni & Saleri 2007; 

Lee 2012; Golub & Van Loan 2013). For reasons of space, it is not possible to present this analysis 

for the 22 applications of AHP. Thus, three applications were selected, where each one has 𝐆𝐴x𝐶  

full rank with dimension C > A (de Abreu et al. 2000) or C = A (Trevizano & Freitas 2005) or C < 

A (Sbeity et al. 2014). Two figures are presented for each application. The first figure (Figures 6, 

8 and 10) corresponds to the sensitivity analysis according to the relative error of 𝐁𝐶x1. In these 

cases the vertical line Rank Reversals (2) corresponds to the perturbed vector 𝐁𝐶x1 as a whole. 

The second figure (Figures 7, 9 and 11) corresponds to the sensitivity analysis according to the 

relative error of 𝐆𝐴x𝐶 . All figures show the relative error of the solution for the original and 

equivalent formulations, and in the equivalent formulation the two appropriate choices for 𝐂𝐶xA 

are considered. The Algorithm 3 presents the computational idea to build the graphs. 
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Table 4. Five matrix norms used in the sensitivity analysis. 
 

 
 

 
 

Figure 6. Sensitivity analysis perturbing 𝐁𝐶x1  in case (Trevizano & Freitas 2005) (C = A).  

 

 
 

Figure 7. Sensitivity analysis perturbing 𝐆𝐴x𝐶  in case (Trevizano & Freitas 2005) (C = A). 



Some mathematical comments about the AHP: Part II - Practical analysis 

 

Almeida et al. (2021) / Pesquisa e Ensino em Ciências Exatas e da Natureza, 5:                                                                     13 

 

 
 

Figure 8. Sensitivity analysis perturbing 𝐁𝐶x1 in case (Sbeity et al. 2014) (C < A). 

 

 
 

Figure 9. Sensitivity analysis perturbing 𝐆𝐴x𝐶  in case (Sbeity et al. 2014) (C < A). 

 

 
 

Figure 10. Sensitivity analysis perturbing 𝐁𝐶x1 in case (de Abreu et al. 2000) (C  > A). 
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Figure 11. Sensitivity analysis perturbing 𝐆𝐴x𝐶  in case (de Abreu et al. 2000) (C  > A). 

 

 

In all applications the curves 𝐗𝐴×1
𝑂𝑅𝐺 , 𝐗𝐴×1

𝐸𝑄𝑉1
 and 𝐗𝐴×1

𝐸𝑄𝑉2
 are straight lines. In addition, in all 

figures it is not possible to notice a difference between the sensitivity of the original formulation 

and the equivalent for the two choices of 𝐂𝐶xA. That is, the curves 𝐗𝐴×1
𝑂𝑅𝐺 , 𝐗𝐴×1

𝐸𝑄𝑉1
 and 𝐗𝐴×1

𝐸𝑄𝑉2
 always 

overlap. Therefore, the two formulations of AHP show similar sensitivity. This result justifies the 

new mathematical analysis of the AHP performed in Alvarez et al. (2021), and reinforces the 

equivalence between the formulations. If there was no overlap of the curves, the curve with the 

greatest relative error would represent the formulation with the greatest sensitivity, and 

consequently with the greatest chance of rank reversal. 

In Figure 8 the vertical lines Rank Reversals (1) and Rank Reversals (2) show overlap. 

However, in Figures 6, 7, 9, 10 and 11 the vertical lines Rank Reversals (1) and Rank Reversals 

(2) do not match. This means that there is a difference between the sensitivity analysis 

considering only the critical element and the sensitivity analysis considering the critical column 

vector. Moreover, if the vertical line Rank Reversals (2) is positioned to the left of the vertical 

line Rank Reversals (1), then the formulation is more sensitive to the critical column vector than 

to the critical element. That is, the perturbation in the critical column vector that causes the 

rank reversal is less than the perturbation needed in the critical element for the rank reversal to 

arise. In other words, the typical or standard sensitivity analysis of the AHP is unable to reveal 

the rank reversal in a region where the sensitivity analysis via the critical column vector reveals. 

Furthermore, when considering the perturbation only in 𝐁𝐶x1 for the three cases Rank Reversals 

(2)≤Rank Reversals (1). However, the same cannot be said for the perturbation only in 𝐆𝐴x𝐶 , 

since in Figure 9 Rank Reversals (1)≤Rank Reversals (2). Therefore, this indicates that in order to 

have a more complete sensitivity analysis on the rank reversal effect it is necessary to carry out 

both analyzes: typical and the new one via the critical column vector. 

In all cases, the curves 𝐗𝐴×1
𝑂𝑅𝐺 , 𝐗𝐴×1

𝐸𝑄𝑉1
 and 𝐗𝐴×1

𝐸𝑄𝑉2
 were limited superiorly by the theoretical 

error in the five norms used. The theoretical errors closest to the curves 𝐗𝐴×1
𝑂𝑅𝐺 , 𝐗𝐴×1

𝐸𝑄𝑉1
 and 𝐗𝐴×1

𝐸𝑄𝑉2
 

were calculated using the norm ∥ ○ ∥max. Theoretical errors calculated with the other four norms 

greatly overestimated the relative errors of the solutions 𝐗𝐴×1
𝑂𝑅𝐺 , 𝐗𝐴×1

𝐸𝑄𝑉1
 and 𝐗𝐴×1

𝐸𝑄𝑉2
. The slope of 

each theoretical error curve is the condition number 𝑐𝑜𝑛𝑑𝑚(𝐆𝐴x𝐶), which is greater than the 

slope of the curves 𝐗𝐴×1
𝑂𝑅𝐺 , 𝐗𝐴×1

𝐸𝑄𝑉1
 and 𝐗𝐴×1

𝐸𝑄𝑉2
. This shows the importance of choosing the 

appropriate norm to carry out a theoretical sensitivity analysis closer to the actual application 

cases. 
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Algebraic transformations when 𝐆𝐴x𝐶  is deficient rank 
 

Among all the analyzed cases, only one application presented G𝐴x𝐶  with deficient rank 

(Koksal & Ozmutaf 2009). In this case (Koksal & Ozmutaf 2009) C < A and K = 4, where the 

column vectors 𝐙5×1
1  and 𝐙5×1

3  are parallel. Following the transformations described in Alvarez et 

al. (2021) it is possible to obtain a condensed formulation (8) with the same original solution. 

The condensed matrix  𝐆6x4 is full rank. The matrix 𝐆6x4 is condensed because its dimension is 

smaller than the dimension of 𝐆6×5. Note that the LD column vectors of 𝐆6×5 have not been 

removed from the analysis. These vectors were factored, and their weights were redistributed in 

�̃�2 = (𝐛1 + 𝐛3). Note also that in this application case the two LD column vectors of 𝐆6×5 are not 

ordered. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two benefits of this algebraic transformations can be highlighted. First, choose 

appropriate for 𝐂𝐶×𝐴, since the equations (3) and (4) are not the most appropriate. For example, a 

choice is given by the equation (9), which is similar to the equation (3) replacing 𝐆𝐴x𝐶  with 𝐆𝐴xK. 

 

 
 

Another choice would be given by the equation (10) 

 

 
 

Since 𝐆𝐴xK is full rank it is not necessary to use special computational routines in MATLAB® to 

solve 𝐂𝐾×𝐴𝐗𝐴×1
𝐸𝑄𝑉

 = 𝐂𝐾×𝐴𝐆𝐴x𝐶𝐁𝐶x1 = 𝐂𝐾×𝐴𝐆𝐴xK�̃�𝐾x1. 

The second benefit is the better condition number of the 𝐆𝐴xK when compared to 𝐆𝐴x𝐶 . 

Table 5 shows the comparison between the formulations (1) and (8) for this case of deficient 

rank (Koksal & Ozmutaf 2009). As can be seen, the condensed matrix has a much lower 

condition number. It is well known that a lower condition number ensures greater stability and
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robustness to the original and equivalent formulations. This is also verified in the highest value 

of the perturbation 
∥Δ𝐙𝐶×1

𝑗,𝑐𝑟𝑡
∥2

∥𝐙𝐶×1
𝑗,𝑐𝑟𝑡

∥2
 and 

∥Δ𝐆𝐴x𝐶∥2

∥𝐆𝐴x𝐶∥2
 needed to generate the rank reversals. 

 
 

Tabela 5. Comparison between the original and condensed formulations in the case (Koksal & Ozmutaf 

2009). 

 

 

 
The rank reversal effect on the AHP 
 

The rank reversals effect is common in AHP applications (Maleki & Zahir 2013; Aires & 

Ferreira 2018). This effect was detected in (Belton & Gear 1983). Subsequently, several studies 

and debates have appeared trying to explain and avoid this effect. However, even today the 

debate remains open without definitive answers. In Part I of this research (Alvarez et al. 2021) a 

new mathematical analysis of the AHP is proposed. In this new analysis the AHP is formulated 

in terms of a linear system of algebraic equations. In this way, it is natural to perform the AHP 

sensitivity analysis via condition number. Consequently, the sensitivity analysis via condition 

number of any linear system leads to Remark 1 in (Alvarez et al. 2021). This remark states that 

the rank reversal is impossible to eliminate in AHP, and the results presented in the section 

above support this statement. As seen in all the figures in the section above, the rank reversal 

effect corresponds to a region delimited inferiorly by the vertical line Rank Reversals (1) or 

Rank Reversals (2) and superiorly by the vertical line Bound of infeasible. Since it is impossible 

for the lower and upper limits of this region to be the same, then in every application of AHP 

the rank reversal effect will always be present. To reduce or mitigate this effect, it is necessary 

that the vertical lines Rank Reversals (1) or Rank Reversals (2) are as far away as possible from 

the origin in these figures. This will make more stable and reliable the AHP. 

Three causes attributable to the construction of 𝐆𝐴x𝐶  and 𝐁𝐶x1 can negatively impact the 

rank reversal. First, inclusion or removal of criteria and/or alternatives. Second, uncertainties or 

inaccuracies in 𝐆𝐴x𝐶  and/or 𝐁𝐶x1 combined with “ill-conditioned” 𝐆𝐴x𝐶 . Third, deficient or almost 

deficient rank of 𝐆𝐴x𝐶 . These three causes are linked to two properties of 𝐆𝐴x𝐶 : rank deficient and 

“ill-conditioned” matrix, which in turn is related to the problem being mathematically “well-

posed” and “well-conditioned” (Alvarez et al. 2021). 

In the first cause the dimension of 𝐆𝐴x𝐶  is changed, and consequently its properties of 

rank and condition number. Geometrically, if an alternative is included/removed, the vector 

subspace S ⊆ ℝA will have its dimension changed to greater or lesser, and if a criterion is 

included/removed the number of hyperplanes will be changed to greater or lesser (Alvarez et al. 

2021). Therefore, in both cases of inclusion/removal, the point common to all hyperplanes 

(solution) will be changed. 

In the second cause the dimension of 𝐆𝐴x𝐶   is not changed. However, if 𝐆𝐴x𝐶  is “ill-

conditioned”, small changes in 𝐆𝐴x𝐶  and/or 𝐁𝐶x1  due to uncertainties or inaccuracies generate 

large changes in the solution. Among these large changes in the solution is included the rank 

reversal. 

 In the third cause, there can be infinite solutions in the equivalent formulation of AHP. 

Consequently, the solution of the original formulation can change between the infinites of the 

equivalent formulation, motivated by small perturbations in 𝐆𝐴x𝐶  and/or 𝐁𝐶x1. These infinite 

solutions include those with a rank reversal. 
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Conclusions  
 

In this work the theoretical developments carried out in (Alvarez et al. 2021) are verified 

in 22 applications of AHP. The results show that the last step of the method, Synthesis, can be 

reformulated in terms of a linear system of equations. In all application cases the solution 𝐗𝐴×1
𝐸𝑄𝑉1

 

= 𝐗𝐴×1
𝐸𝑄𝑉2

 = 𝐗𝐴×1
𝐸𝑄𝑉3

 = 𝐗𝐴×1
𝑂𝑅𝐺 . Moreover, the two formulations of the AHP show similar behavior in the 

sensitivity analysis performed. 

A sensitivity analysis was carried out, considered standard in the context of the AHP, 

where the critical elements of 𝐆𝐴x𝐶  and 𝐁𝐶x1  are determined by perturbations in relative and 

absolute terms. It was found that there is no simple relationship between the critical element 

and the perturbation used, although a tendency for the critical criterion to be the criterion of 

greater or lesser weight can be noticed depending on whether the perturbation is relative or 

absolute. 

A sensitivity analysis different from the standard was performed, where the critical 

column vector of 𝐆𝐴x𝐶  is determined. A stochastic method was developed to randomly perturb 

all components of the column vectors. It was found that the column of the critical element does 

not necessarily coincide with the column of the critical column vector. Moreover, in some 

applications considering the same amount of perturbation measured by the matrix norm, the 

rank reversal occurs first with the perturbation of the critical column vector than with the 

perturbation of the critical element. This also occurs when all components of the vector 𝐁𝐶x1 are 

randomly perturbed. Therefore, in these cases, AHP is more sensitive to perturbations in the 

critical column vector than to perturbations in the critical element. Furthermore, the critical 

column vector is unique independently of whether the perturbation is relative or absolute. 

A new sensitivity analysis was performed via condition number of 𝐆𝐴x𝐶 , where 

perturbations are made in the input data 𝐆𝐴x𝐶  or 𝐁𝐶x1  to calculate the relative error 
∥Δ𝐆𝐴x𝐶∥𝑚

∥𝐆𝐴x𝐶∥𝑚
 or 

∥Δ𝐁𝐶x1∥𝑚

∥𝐁𝐶x1∥𝑚
. Subsequently, the curves that determine the impact of these perturbations on the 

relative error of the solution for the two formulations are plotted. It was found that the curves of 

the two formulations are similar straight lines. Moreover, the rank reversal effect corresponds to 

a region bounded inferiorly by the vertical line Rank Reversals (1) or Rank Reversals (2) and 

superiorly by the vertical line Bound of infeasible. This region will always exist for any linear 

system of equations. Therefore, in all AHP applications of the type determined by equation (1), 

the rank reversal effect will always be present. 

An example of application of AHP showed how the algebraic transformations described in 

(Alvarez et al. 2021) allow to make a rank deficient matrix in full rank, and in this way the 

condensed formulation presents greater stability and reliability. Finally, it must be said that the 

mathematical developments carried out here can be applied to other decision-making methods 

based on matrices and linear systems of equations. In addition, in future work it is necessary to 

go even deeper into the theoretical analysis initiated in (Alvarez et al. 2021).  
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