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A regra de Rensch está quebrada em Cervidae 
 

Resumo: A diferença de tamanho corporal entre machos e fêmeas é conhecida como dimorfismo sexual de 

tamanho (DST). O surgimento do DST é atribuído na maioria das vezes a processos de seleção sexual, 

entretanto a seleção natural também pode afetar o DST. Tem se observado em diversos grupos que a 

intensidade do DST está associada com o tamanho corporal das espécies, padrão conhecido como Regra de 

Rensch. Nós testamos a regra de Rensch na família Cervidae, um grupo com forte dimorfismo sexual. 

Analisamos o DST de 35 espécies utilizando análises de regressão tipo II (eixo principal reduzido) 

filogenética (RMA). Ao analisar a relação entre o tamanho dos machos vs o tamanho das fêmeas 

observamos que o DST se modifica isometricamente com o aumento do tamanho corporal (RMA = 1.05, p 

= 0.18). Estes resultados evidenciam que a regra de Rensch não se cumpre nos membros da família 

Cervidae. Na última década, diversos estudos tem mostrado grupos taxonômicos que não seguem a regra 

de Rensch. Dado que o tamanho corporal está associado com diversas características ecológicas das 

espécies, é possível que a associação do tamanho corporal com o DST não seja sempre um efeito causal nos 

grupos que seguem a Regra de Rensch.  
 

Palavras chave: Dimorfismo sexual de tamanho, mamíferos, RMA filogenético, seleção sexual, tamanho 

corporal.   

 

Abstract: The difference in body size between males and females is known as sexual size dimorphism (SSD). 

The existence of SSD is usually attributed to processes of sexual selection, although natural selection can 

also affect SSD. In some animal groups the extension of SSD is associated with body size, a pattern known
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as Rensch’s rule. We tested Rensch’s rule in the members of the family Cervidae, a group with strong 

sexual dimorphism. We analyzed SSD of 35 species by means of phylogenetic reduced major axis 

regression (RMA). Analyzing the relationships between male size vs female size we observed that SSD 

changes isometriclly with the increase of body size (RMA = 1.05, p = 0.18). These result evidence that 

Rensch’s rule does not operate among members of the family Cervidae. In the last decade, many studies 

have shown diverse taxonomic groups that do not follow Rensch’s rule. Because body size is associated with 

many ecological characteristics, it is possible that the association of body size with SSD is not always a 

causal effect in those groups that follow Rensch’s rule. 
 

Key words: Sexual size dimorphism, mammals, phylogenetic RMA, sexual selection, body size. 

 

 

Introduction 
 

 Sexual dimorphism is widespread in the animal kingdom. Males and females may differ 

in most secondary sexual traits (e.g., body size and shape, colour, antlers, feathers and behaviour) 

and sexual selection acts on those traits by maximizing individual reproductive success while 

not necessarily increasing survivorship (Darwin 1859, 1871; Emlen et al. 2005; Plard et al. 2011; 

Fairbairn 2013). Thereby, natural selection has also an important role on sexual dimorphism by 

limiting the growth of sexual display traits, increasing the competition between sexes and 

increasing differences between the reproductive and ecological roles of males and females 

(Clutton-Brock et al. 1977; Pérez-Barbería et al. 2002; Stuart-Fox & Ord 2004). Sexual size 

dimorphism (SSD) – the difference in body size between males and females of the same species - 

is among the most conspicuous and widely studied sexual differences (Emlen et al. 2005; Isaac 

2005; Tobias et al. 2012). The SSD (either male-biased or female-biased) is common and highly 

variable in the most diverse animal groups, and even closely related phylogenetic lineages may 

show strikingly different levels of SSD. Additionally, both conditions (male and female-biased 

SSD) may occur within the same lineage indicating a great lability of SSD (Fairbairn et al. 2007).  

 Body size is a highly variable characteristic both at the intra-specific (e.g., Martinez et al. 

2013, 2018) and inter-specific levels (Smith & Lyons 2011). Body size is strongly associated with 

multiple characteristics of the life history of organisms and is in turn affected by environmental 

(Peters 1983; Olalla-Tárraga et al. 2015; Gohli & Voje 2016) and genetic factors (Martinez et al. 

2018). SSD is not an expeption to these factors, many studies show that SSD may be associated 

with variation of body size (Fairbairn et al. 2007; Fairbairn 2013). As a result of this dependence, 

in species where males are larger than females, when species body size is increased, SSD also 

increases. In contrast, in species whose females are bigger than males the increase in body size 

would lead to a decrease of SSD (Rensch 1950; Fairbairn 1997). This pattern is known as 

“Rensch’s rule” and could be a result of a differential response to selection on body size in 

females and males (Fairbairn 1997). However, no completely satisfactory model of Rensch’s rule 

exists up to this day (Kappeler & van Schaik 2004; Piross et al. 2019). Then, if Rensch’s pattern is 

fulfilled, we expect a positive allometric association between SSD and body size. Body size is 

decisive for male success in polygenic species because bigger males are commonly the 

healthier, more aggressive and experienced ones (Miller 2013). 

 Understanding the mechanisms that modulate SSD is very relevant for the assessment 

of the evolutionary forces that drive species diversification. We analyzed SSD and the operation 

of Rensch’s rule in Cervidae. We chose deer as a model system for the following reasons: data on 

male and female body size are available for many species, and the family present many obvious 

traits of male-biased sexual dimorphism as well as a variety of mating and social systems. We 

used phylogenetic comparative methods to analyse the relationship (scaling) between SSD data 

and body size for 35 cervid species. 

 

Material and Methods 
 

Data collection 
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We built a database of body mass for males (MBM) and females (FBM) of 35 cervid 

species (Table 1). We estimated SSD as log(MBM/FBM) (Fairbairn 2007), where positive values 

represent a male bias of SSD and negative values represent a female bias of SSD. 

 

Table 1. Body mass (kg) of male (MBM) and female (FBM) cervids species used in this study. 
 

Species Common Name MBM FBM LOG(M/F) Reference 

Alces alces Moose 482.5 365 0.121204453 Plard et al. (2011) 

Axis axis Chital 89.5 39 0.360758428 Plard et al. (2011) 

Axis porcinus Hog Deer 41 31 0.121422163 Plard et al. (2011) 

Capreolus capreolus Western Roe Deer 28 26.5 0.023912157 Plard et al. (2011) 

Capreolus pygargus Eastern Roe Deer 42 39.5 0.026652195 Plard et al. (2011) 

Cervus albirostris White-Lipped Deer 204 125 0.212720154 Plard et al. (2011) 

Cervus canadensis Wapiti 350 250 0.146128036 Plard et al. (2011) 

Cervus duvauchelii Barasingha 236 145 0.211544001 Plard et al. (2011) 

Cervus elaphus Red Deer 250 125 0.301029996 Plard et al. (2011) 

Cervus eldi Eld's Deer 105 67 0.195114496 Plard et al. (2011) 

Cervus nippon Sika Deer 52 37 0.14780162 Plard et al. (2011) 

Cervus timorensis Timor Deer 95.5 33 0.461489432 Plard et al. (2011) 

Cervus unicolor Sambar 192 146 0.118948373 Plard et al. (2011) 

Cervus mariannus Philippine Deer 64 40.4 0.199798609 Wiles et al. (1999) 

Dama dama Fallow Deer 67 44 0.182622126 Plard et al. (2011) 

Elaphodus cephalophus Tufted Deer 18 18 0 Plard et al. (2011) 

Elaphodus davidianus Pere David's Deer 214 159 0.129016649 Plard et al. (2011) 

Hippocamelus antisensis Taruca 65 45 0.159700843 Barrio (2010) 

Hippocamelus bisculus Chilean Guemal 95 75 0.102662342 Plard et al. (2011) 

Magammuntiacus vuquangensis Giant Muntjac 45 34 0.121733597 Plard et al. (2011) 

Mazama americana Red Brocket 24.5 24.5 0 Plard et al. (2011) 

Mazama goauzoupira Gray Brocket 18 18 0 Plard et al. (2011) 

Mazama rufina Dwarf Red Brocket 12.5 12 0.017728767 Barrio (2010) 

Moschus fuscus Black Musk Deer 12.5 13 -0.017033339 Nowak (1999)  

Muntiacus feae Fea's Muntjac 19.5 22 -0.052388069 Geist (1998) 

Muntiacus crinifrons Black Muntjac 23 24.1 -0.020289207 Plard et al. (2011) 

Muntiacus gonghanensis Gongshan Muntjac 21 16 0.118099312 Plard et al. (2011) 

Muntiacus muntjak Muntjac 19 20 -0.022276395 Plard et al. (2011) 

Muntiacus putaoensis Leaf Deer 12 12 0 Plard et al. (2011) 

Muntiacus reevesi Chinese Muntjac 13.5 14 -0.015794267 Plard et al. (2011) 

Muntiacus atherodes Bornean Muntjac 18 16 0.051152522 Payne & Francis (1985) 

Odocoileus hemionus Mule Deer 112.5 55.5 0.306859539 Plard et al. (2011) 

Pudu puda South Pudu Deer 13 13.5 -0.016390416 Plard et al. (2011) 

Pudu mephistophiles Northern Pudu 13.16 13.84 -0.021880201 Geist (1998) 

Tragulus javanicus Lesser Mouse-Deer 2 1.5 0.124938737 Geist (1998) 

 

Comparative analyses  
 

We performed a phylogenetic reduced major axis regression (RMA) analysis between 

log10 (MBS) and log10 (FBS), with the phytools package (Revell 2012) in R 3.2.2 (R Core Team 

2018). If Rensch’s rule is verified, the slope (β) must be significantly higher than 1, but if β < 1 

the rule is inverted, and if β = 1 the rule is not supported (Abouheif & Fairbairn 1997; Fairbairn 

1997). Comparative methods allow us to correct for statistical non-independence of biological 

data (Felsenstein 1985). Due the non-independence of species-level data, the use of comparative 

methods is necessary. Additionally, the use of RMA is appropriate because ordinary model I 

regressions are inadequate when both variables (response and predictors) are estimated with 

errors (Fairbairn 1997). In this case, regression models of type II are the best and recommended 

option (Sokal & Rohlf 1995).  

To perform comparative analyses, we used the phylogenetic hypothesis from Hassanin 

et al. (2012). Since we have some species with size information that are not included in the 

phylogeny, we included them randomly from the genus node where they occur. This procedure 

was repeated 100 times, generating 100 phylogenetic trees and allowing us to account for 

phylogenetic uncertainty in our analyses (Rangel et al. 2015). Thus, the RMA phylogenetic
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analyses were conducted 100 times for each phylogenetic tree, as proposed by Martinez et al. 

(2015). 

 

Results 
 

Data overview 
 

The body weight of analysed cervid species varied between 2 to 482.5 kg (mean = 87.70 

kg) for males, and between 1.5 to 365 kg for females (mean = 60.58 kg) (Table 1). We observed a 

strong prevalence of male-biased sexual dimorphism (~70% of species). The highest male-biased 

SSD were found for Cervus timorensis (male = 95.5 kg, female = 33 kg). Conversely, from 

female-biased SSD species the difference between females and males were small, with the most 

dimorphic species being Muntiacus feae (male = 19.5 kg, female = 22 kg). When analysing the 

scaling of sexual dimorphism with body size, we found no evidence that SSD increases in 

relation to body mass in deer species. We analysed the relationship of log10 (MBM) versus log10 

(FBM) and from these results we observed a mean of RMA equal to 1.05 (p = 0.18) (Figure 1). 

This result do not support Rensch’s rule in cervids.  
 

 
 

Figure 1. Reduced Major Axis (RMA) regressions between male body mass (log10) vs female body mass 

(log10) of 35 species of cervids. The solid line show the slope of regression and dashed line show de slope = 

1. 

 

Discussion 
 

Our results showed that cervids display a large variation in body size and SSD. Because 

of the predominance of male-biased SSD we expected that, if Rensch’s rule operates in this
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family, a hyperallometric relationship between male and female size (β > 1.0) indicating an 

increase in SSD with increasing body size. Nevertheless, our results showed an isometric 

relationship (β = 1.0) which means that SSD does not scale with body size in cervids which in 

consequence do not follow Rensch’s rule. 

Most mammal species show male-biased SSD (Fairbairn 2007). As known, sexual 

selection could not only drive SSD, but also be responsible for a significant fraction of the 

evolution of male bias (Jarman 1983; Isaac 2005; McPherson & Chenoweth 2012). The pattern 

recognized as Rensch’s rule proposes that SSD increases when the body size in a male-biased 

species also increases (Rensch 1950; Abouheif & Fairbairn 1997). However, our results indicate 

that there is no significant increment in SSD with body size growth. Although some comparative 

analyses suggest the opposite (Abouheif & Fairbairn 1997; Fairbairn 1997, 2007), Rensch’s rule 

has been widely questioned due the lack of clear mechanisms that may explain this pattern 

(Reiss 1989; Fairbairn 2013). 

Different hypotheses were proposed to account for the covariation between SSD and 

body size (Martinez & Bidau 2016). Many studies that attempted to find evidences for Rensch’s 

rule have serious methodological flaws and inappropriate statistical analyses (Abouheif & 

Fairbairn 1997). As proposed by many biologists, allometry consistent with Rensch’s rule evolves 

as a response to sexual selection of male size (Fairbairn 1997, 2007, 2013). Thus, selection will 

happen more often in taxa with male biased size, as in cervids. Nevertheless, the rule lacks in 

consistency and the reproductive success of larger males may not increase the size difference 

between of males and females. Alternatively, some researchers suggest that SSD would emerge 

due a correlated evolutionary response in one sex to stronger sexual selection in another sex 

(Dale et al. 2007). In this case, SSD evolves as a by-product of genetic differences between males 

and females and their different responses to similar selective pressures. Another possible 

explaination is when females and males use different resources, being the natural selection the 

force that promotes the differentiation (Fairbairn 1997). When exist a strong stabilizing selection 

on female body size than on male size can lead to increased SSD when resources are plentiful, 

independent of sexual selection (Colwell 2000). Therefore, our fail to detect this pattern in 

extant species may due to our inability to directly analyse these differences between males and 

females across lineages (Blanckenhorn et al. 2007). 

Rensch’s rule is thus strongly controversial and numerous exceptions exist in mammals 

(e.g., Canidae, Felidae, Ctenomyidae) (Lindenfors et al. 2007; Martinez et al. 2014; Martinez & 

Bidau 2016; Stevens & Platt 2015; Bidau & Martinez 2017). The trend to follow or not Rensch’s 

rule seems not to be phylogenetically structured. This is evident in some recent studies of 

domesticated animals. In a recent study, Bidau & Martínez (2017) showed that domesticated 

mammals such as dogs and cats, follow Rensch’s rule while their ancestors (species of Canidae 

and Felidae) do not. Possible reason for the existence of taxa that follow Rensch’s rule and other 

that do not may be the intrinsic complexity of the regulation of body size. Body size has a strong 

phylogenetic component (Diniz-Filho et al. 2007) but it is also deeply affected by natural and 

sexual selection (Smith & Lyons 2013). Furthermore, the size of a species is related to many 

ecological traits (e.g. number of offspring, home range, thermal tolerance, number of parasites) 

(Morand & Poulin 1998; Olalla-Tárraga et al. 2015). In carnivores for example, the number of 

parasites can increase SSD (Huang et al. 2015), while species with larger body size may also host 

more parasites (Morand & Poulin 1998). The association of body size with multiple ecological 

traits may lead reserachers to find an association between body size and SSD. However, these 

relationships not necessarily indicate that body size affects the species SSD. In this sense, studies 

of Rensch’s rule must consider the direct and indirect effects of body size on SSD. Thus, an 

alternative to this approach is to use ecological characteristics jointly with body size to 

understand the ultimate causes that modulate SSD. 
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